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SUMMARY

Adult humans have about 25 trillion red blood cells
(RBCs), and each second we recycle about 5 million
RBCs by erythrophagocytosis (EP) in macrophages
of the reticuloendothelial system. Despite the central
role for EP in mammalian iron metabolism, the mole-
cules and pathways responsible for heme trafficking
during EP remain unknown. Here, we show that the
mammalian homolog of HRG1, a transmembrane
heme permease in C. elegans, is essential for macro-
phage iron homeostasis and transports heme from
the phagolysosome to the cytoplasm during EP.
HRG1 is strongly expressed in macrophages of
the reticuloendothelial system and specifically local-
izes to the phagolysosomal membranes during EP.
Depletion of Hrg1 in mouse macrophages causes
attenuation of heme transport from the phagoly-
sosomal compartment. Importantly, missense poly-
morphisms in human HRG1 are defective in heme
transport. Our results reveal HRG1 as the long-
sought heme transporter for heme-iron recycling in
macrophages and suggest that genetic variations in
HRG1 could be modifiers of human iron metabolism.

INTRODUCTION

In humans, terminal erythroid differentiation is the process by

which the earliest morphologically recognizable erythroid pre-

cursor in the bone marrow, the proerythroblast, differentiates

into a mature red blood cell (RBC) in the peripheral blood (Ji

et al., 2011). This transformation requires the coordinated matu-

ration of the nucleus and cytoplasm that eventuates in fully

hemoglobinized mature RBCs, devoid of a nucleus and all other

organelles (Chasis andMohandas, 2008; Mohandas and Chasis,

2010). Defects in numerous pathways can disrupt this sequence
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of maturation, but none is as important as the synthesis of

hemoglobin, which requires the stoichiometric assembly of

four globin peptides (two a and two b chains) and four heme

(iron-protoporphyrin IX) moieties. Fully one-third of the protein

in an RBC is hemoglobin which contains more than a billion

iron atoms in the form of heme (Knutson and Wessling-Resnick,

2003). Consequently, it is not surprising that inherited or

acquired defects in hemoglobin synthesis, including hemoglo-

binopathies, iron deficiency, and the anemia of inflammation,

are among the most prevalent human afflictions.

Defects in the synthesis or metabolism of any one of the three

components—globin, iron, or protoporphyrin IX—lead to ineffec-

tive erythropoiesis. While globin and porphyrin synthesis are the

province of the RBC precursor itself, iron metabolism requires

systemic homeostatic control that regulates iron absorption in

the intestine, iron storage in the liver and macrophages, and ery-

throid uptake and utilization. Importantly, most of the �25 mg of

iron required to synthesize the hemoglobin in over 360 billion

RBCs each day (5 million per second) derives from recycling of

heme-iron from aged RBCs catabolized by reticuloendothelial

system (RES) macrophages (Bratosin et al., 1998). At steady

state, dietary heme and nonheme iron absorption contributes

only 1–2 mg per day to the systemic iron economy (Andrews,

1999; Hentze et al., 2010).

RBC recycling occurs by a process known as erythrophagocy-

tosis (EP), which is accompanied by the enzymatic catabolism of

RBC components within the macrophage phagolysosome, re-

sulting in the breakdown of hemoglobin and the release of

heme (Bratosin et al., 1998). Several lines of evidence support

a cellular model in which the degradation of heme occurs in

the cytosol via the catalytic activity of the smooth endoplas-

mic reticulum-associated enzymes heme oxygenases 1 and 2

(HMOX1/2), producing iron, biliverdin, and carbon monoxide

(Gottlieb et al., 2012; Yanatori et al., 2010; Yoshida and Sato,

1989). The iron liberated from heme can be stored in ferritin

(FTH1/FTL1) or transported out of the cell by the iron ex-

porter ferroportin (FPN1) whose cell surface expression is con-

trolled by the iron regulatory hormone hepcidin (HAMP1) (Weiss,

2009). This model of EP necessitates the transport of heme from
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the lumen of the phagolysosome into the cytosol, although the

identity of the hypothetical heme transporter on the phagolyso-

somal membrane has not been identified.

Notwithstanding the importance of their function to iron

metabolism and erythropoiesis, identification and characteriza-

tion of heme and other porphyrin transporters in mammals

have proven to be difficult (Hamza and Dailey, 2012; Quigley

et al., 2004; Severance et al., 2011). This is in part due to

a lack of genetic and molecular tools but is also a consequence

of the promiscuity of proteins capable of transporting heme with

low affinity, which has confounded functional cloning experi-

ments (Helias et al., 2012; Krishnamurthy et al., 2004, 2006;

Qiu et al., 2007; Saison et al., 2012; Salojin et al., 2011; Shayeghi

et al., 2005; Wang et al., 2012). Furthermore, the lack of in vivo

experimental validation or in vivo phenotypes of those proteins

identified in vitro or solely on the basis of in vivo expression

patterns has been misleading or provided ambiguous results.

We exploitedC. elegans, a heme auxotroph, to identify HRG1-

related heme transporters (Rajagopal et al., 2008). Worms

acquire heme from the environment and transport it throughout

the organism, negating several of the variables that have

historically confounded the mammalian heme transport field

(Rao et al., 2005). Depletion of hrg-1 in worms by RNAi leads

to abnormal heme sensing and accumulation of heme analogs

(Rajagopal et al., 2008). Transient knockdown of zfhrg1 in zebra-

fish leads to profound erythropoietic defects, while ectopic

expression of human HRG1 in murine erythroleukemia cells

leads to enhanced ZnMP uptake. HRG1 is conserved in verte-

brates, and human and worm proteins bind heme (Rajagopal

et al., 2008; Yuan et al., 2012). Furthermore, the strength of

this interaction is low pH dependent, suggesting that it may func-

tion in an acidic microenvironment, such as the phagolysosome.

Correspondingly, HRG1 localizes primarily to the endolysosome

in nonpolarized cells. Here we show that the long-sought heme

transporter for macrophage heme-iron recycling is the human

homolog of C. elegans HRG1 and identify a polymorphism that

may be a genetic modifier of heme metabolism in humans. Our

studies in mice, zebrafish, yeast, and mammalian cell lines sup-

port this conclusion.

RESULTS

HRG1 Is Abundantly Expressed in Reticuloendothelial
Macrophages
To identify the tissue distribution of HRG1, polyclonal antibodies

were generated against the 18 amino acid cytoplasmic C ter-

minus of human HRG1. Immunoblotting with the antisera

detected an �15 kDa band corresponding to the predicted

molecular weight of HRG1 monomers, in various human and

mouse cell lines (Figure 1A and see Figure S1A online). Knock-

down of either human or mouse HRG1 by siRNA resulted in a

significant reduction in HRG1 protein, indicating that the signal

detected by immunoblotting was authentic (Figure 1B and Fig-

ure S1B). Immunohistochemistry with HRG1 antibodies de-

tected high levels of HRG1 in the macrophages of the spleen,

liver, and bone marrow in wild-type 129SvEv/Tac mice and

humans—tissues that constitute the reticuloendothelial macro-

phage system responsible for recycling the heme iron in effete

RBCs (Figures 1C and 1D and Figures S1C and S1D). HRG1
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was also detected as weak granular/vesicular staining within

hepatocytes (Figures 1C and 1D, right panels), consistent with

the nearly ubiquitous expression of HRG1 mRNA and protein in

different cell types and tissues (Rajagopal et al., 2008).

Hrg1 Is Recruited to PhagolysosomalMembranes during
Erythrophagocytosis
To ascertain the function of HRG1 in mammals, bone marrow-

derived macrophages (BMDMs) from mice were isolated and

differentiated ex vivo. Consistent with the previously observed

location of ectopic human HRG1::GFP in HEK293 cells, endoge-

nousHrg1was localized primarily to the endolysosome inBMDM

by immunofluorescence microscopy (Figure 1E). To simulate

EP, we exposed BMDM to oxidized RBCs. Oxidation of RBCs

exposes phosphatidylserine on the outer membrane leaflet,

mimicking cellular senescence and enhancing susceptibility to

phagocytosis by macrophages (Cambos and Scorza, 2011).

Strikingly, the phagolysosomalmembranes ofmacrophages sur-

rounding the RBCs were greatly enriched with Hrg1 (Figure 1F).

Quantitation of the fluorescence signal intensity revealed that

Hrg1 was recruited to the phagolysosomal membranes specifi-

cally duringphagocytosis ofRBCs,but not latexbeads (Figure1G

versus Figure 1H, and Figure 1I). Additionally, no signal was

detected in BMDM either under resting conditions or during

phagocytosis using pre-immune serum (Figures S1E and S1F).

The enhancement in Hrg1 immunofluorescence was derived

from the BMDMs and not the engulfed RBCs, as mature RBCs

do not express detectable Hrg1 (Figure S1G). Furthermore,

recruitment of Hrg1 to the phagolysosomal membranes was

not an indirect consequenceof hemeor iron, asBMDMsexposed

to opsonized latex beads in the presence of either heme:arginate

(20 mM)or iron (Fe:NTA, 200 mM) did not influenceHrg1 trafficking

(Figure S1H). In resting BMDMs, a negligible portion of Hrg1

overlapped with the lysosomal marker Lamp; however, during

EP, Hrg1 and Lamp1 protein strongly colocalized on the phago-

lysosomal membrane (Figure S1I), supporting the notion that

Hrg1 is specifically recruited to the phagolysosome during EP.

Hrg1 Is Regulated by Heme, Iron, and EP
We next determined whether EP regulates Hrg1. BMDM ex-

posed to RBCs showed greater abundance of Hrg1 mRNA and

protein in a time-dependent manner (Figures 2A and 2B). This

regulation was also dose dependent, as increasing the ratio of

RBCs to macrophages showed a proportional increase in Hrg1

levels (Figures 2C and 2D). To distinguish between the individual

contributions of heme and iron on Hrg1 expression, EP was per-

formed in the presence of the iron chelator deferoxamine (DFO).

Exposure of BMDM to DFO only partially suppressed Hrg1

induction (Figure 2E). This time- and dose-dependent regula-

tion of Hrg1 was reproducible by heme and iron (Figures S2A–

S2C). Furthermore, other genes critical for heme-iron recycling,

namely Hmox1, essential for heme degradation, and Fpn1,

required for iron export, showed a similar responsiveness to

EP, heme, and iron, although the magnitude of fold-change

was different (Figures S2D–S2G) (Delaby et al., 2008).

Although Hrg1 mRNA is upregulated in BMDMs grown in

the presence of heme-depleted media and supplemented with

100 mM iron, 0.5 mM succinyl acetone, an inhibitor of endoge-

nous heme synthesis, suppressed Hrg1 mRNA induction by
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Figure 1. HRG1 Protein Is Expressed in Human and Mouse Macrophages of the Reticuloendothelial System
(A) Immunoblot of HRG1 protein in the mouse fibroblast cell line L929 and the human duodenal cell line HuTu-80.

(B) The a-HRG1 antibody detects mouse Hrg1 specifically. Immunoblot of Hrg1 protein in mouse bone marrow-derived macrophages (BMDM) transfected with

either nonspecific RNAi (nsRNAi) or with mHrg1 RNAi. The arrowhead indicates the predicted 15 kDa Hrg1 band. The star marks a doublet band that is also

suppressed by mHrg1 RNAi. For (A) and (B), actin is shown as a loading control.

(C and D) Immunohistochemistry of HRG1 expression in mouse spleen (C, left panel), mouse liver (C, right panel), human spleen (D, left panel), and human liver

(D, right panel). Yellow and black arrowheads indicate HRG1 expresssion in macrophages and hepatocytes, respectively. HRG1 staining appears as a brown

stain on a blue hematoxylin background. Final magnification is as follows: (C, left panel) 43 with 1003 insert, (C, right) 203 with 1003 insert, (D, left) 403, and

(D, right) 1003.

(E and F) Immunofluorescence imaging of endogenous Hrg1 localization in BMDM that were untreated (E) or fed either oxidized RBCs (F, upper panel) or latex

beads (F, lower panel). Hrg1 protein was detected using a rabbit a-HRG1 antibody followed by a-rabbit Alexa 568. Nuclei were stained with DAPI. Right panel

shows zoom-in pictures of the phagolysosome of BMDM fed RBCs or latex beads.

(G and H) Quantification of the red fluorescence intensity corresponding to Hrg1 protein localization at the phagolysosomal membrane of BMDM fed RBCs

(markers a and b in G), or latex beads (markers a0 and b0 in H).

(I) Quantification of the peak of fluorescence at the phagolysosomal membrane in BMDM fed either oxidized RBCs or latex beads. For each condition, ten

phagolysosomes were analyzed. The change in fluorescence intensity at the phagolysosomal membrane was assessed by calculating [fluorescence at

membrane (points a and b) – fluorescence at point 5 mm away from membrane (points c and d)]. Quantification was performed using Zeiss Zen software for

confocal microscopy. See also Figure S1.
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iron (Figure 2F). This result suggests that Hrg1 is regulated indi-

rectly by iron via de novo heme synthesis.

We have previously shown that noniron metalloporphyrins act

as heme analogs and are transported byHRG1 proteins (Rajago-

pal et al., 2008; Rao et al., 2005). To determine whether the

effects of heme on Hrg1 expression could be reproduced by

a metalloporphyrin, we exposed BMDM to zinc protoporphyrin

IX (ZnPPIX). ZnPPIX is a physiologically relevant metallopor-

phyrin because its levels increase during iron-deficiency anemia

(Labbé et al., 1999). Moreover, ZnPPIX is nonmetabolizable and

inhibits heme degradation by binding to HMOX enzymes (Labbé

et al., 1999). Hrg1 levels increased in a dose-dependent manner
Cell M
in BMDM that were exposed to ZnPPIX (Figure 2G). High

concentrations of ZnPPIX, as expected, resulted in reduced

ferritin levels, an indication that iron release from heme is atten-

uated due to inhibition of Hmox-dependent heme catabolism.

These results affirm that iron via heme and noniron metallopor-

phyrins regulate Hrg1 in macrophages.

Hrg1 Is Regulated by Hemolysis In Vivo
To substantiate our in vitro cell biological studies in vivo, we

injected mice with phenylhydrazine, which causes hemolytic

anemia by damaging circulating erythrocytes, resulting pre-

dominantly in intravascular hemolysis (Itano et al., 1975). The
etabolism 17, 261–270, February 5, 2013 ª2013 Elsevier Inc. 263
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Figure 3. Hrg1 Protein Levels Are Increased in RESMacrophages of

Mice Injected with Phenylhydrazine, Damaged RBCs, or Heme, and

in the Fechm1Pas Mouse

Hrg1 immunohistochemistry on mouse livers was performed 24 hr after

treatment with PBS (A, left panel) or phenylhydrazine hydrochloride (PHZ, A,

right panel), untreated RBCs (B, left panel) or oxidatively damaged RBC

(B, right panel), vehicle (C, left panel), or heme (C, right panel). (D) Hrg1 IHC in

livers from a wild-type mouse in which Hrg1 is localized primarily in macro-

phages (D, left panel) or a ferrochelatase-deficient (Fechm1Pas) mouse in which

it is highly expressed in hepatocytes (D, right panel). Hrg1 staining appears as

a brown stain on a blue hematoxylin background. Original magnification is as

follows: (A–C), 1003, (D) 203. See also Figure S3.

Figure 2. Hrg1 mRNA and Protein Are Regulated by Erythrophago-

cytosis and Heme in Mouse BMDM

(A) qRT-PCR time course analysis of Hrg1 mRNA levels in BMDM fed either

RBCs (EP, C) or latex beads (B).

(B) Immunoblot of Hrg1 protein levels in BMDM 1 and 24 hr following feeding

with RBCs or latex beads, or in time-matched controls grown in heme-

depleted serummedia (HD). Ferritin levels are shown as a control for increases

in intracellular Fe levels in cells fed RBCs or grown in heme.

(C) qRT-PCR analysis of Hrg1 mRNA levels in BMDM fed increasing numbers

of RBCs, in the presence or absence of the iron chelator desferrioxamine

(DFO, 100 mM). Increasing ratios of RBCs:BMDM were added to precultured

BMDM. mRNA levels were assessed 4 hr following EP.

(D) Immunoblot of Hrg1 expression in BMDM fed increasing ratios of

RBCs:BMDM. Samples were analyzed 24 hr following EP.

(E) Immunoblot of Hrg1 protein levels in BMDM exposed to 20 mM heme:

arginate in the presence or absence of 100 mM DFO.

(F) qRT-PCR analysis of Hrg1 mRNA levels in BMDM treated with 100 mM

Fe:NTA in the presence or absence of 0.5 mM succinyl acetone (SA).

(G) Immunoblot of Hrg1 protein levels in BMDM exposed to increasing

concentrations of ZnPPIX:arginate.

(B, D, E, and G) Actin is shown as a loading control. For (A), (C), and (F),

changes in mRNA levels were assessed as fold change compared to control

samples from BMDM grown in HD media. Values were normalized to Gapdh

mRNA levels (internal control). Error bars represent standard error of the mean

(SEM). See also Figure S2.
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released hemoglobin and heme are cleared from the circulation

by haptoglobin and hemopexin, respectively, resulting in a con-

comitant net increase in intracellular heme within macrophages

of the RES. Phenylhydrazine-treated mice showed a dramatic
264 Cell Metabolism 17, 261–270, February 5, 2013 ª2013 Elsevier In
increase in Hrg1 within the resident macrophages of the liver

and spleen (Figure 3A and Figure S3A). These results were highly

reproducible and comparable when mice were injected with

either oxidized RBCs or heme arginate to mimic a transient

increase in intravascular heme (Figures 3B and 3C, Figures

S3B and S3C).

To determine whether Hrg1 is regulated in a genetic animal

model of anemia due to a defect in heme synthesis, we analyzed

Hrg1 in tissues from mice with erythropoietic porphyria. The

Fechm1Pasmouse carries a recessive hypomorphic allele and ex-

presses approximately 5% of wild-type ferrochelatase activity,

resulting in a mild hemolytic anemia, associated with a vast

excess of protoporphyrin IX production and tissue protopor-

phyrin IX accumulation (Davies et al., 2005). We found that

Hrg1 was strikingly elevated in liver macrophages of homozy-

gous Fechm1Pas mice (Figure 3D), indicating that Hrg1 is induced
c.



Figure 4. Hrg1 Mediates Heme Transport

from the Phagolysosome during Erythro-

phagocytosis

(A) Immunoblot of Hrg1 protein levels in BMDM

transfected with either nsRNAi or Hrg1 RNAi and

fed RBCs (EP, 20:1 RBC:BMDM) in the presence

or absence of the iron chelator desferrioxamine.

Actin is shown as a loading control. The right panel

shows quantitation of the intensity of Hrg1 bands

relative to nsRNAi HD controls and normalized to

actin controls.

(B–D) qRT-PCR of Hrg1 (B), Hmox1 (C), and Fpn1

(D) mRNA levels in BMDM transfected with

nsRNAi or Hrg1 RNAi. BMDM were fed RBCs (EP)

in the presence or absence of the iron chelator

desferrioxamine (DFO, 100 mM). Values represent

the fold change relative to HD nsRNAi controls,

normalized to Gapdh (2�DD CT). Samples were

harvested 4 hr post-EP. Statistical analysis for

(C) and (D) for EP and EP + DFO conditions are

as follows: n = 6, nsRNAi versus Hrg1 RNAi

p < 0.0001. Error bars represent SEM. Values with

different letter labels are significantly different

(p < 0.05).

(E) Immunoblot of ferritin levels in BMDM treated

with either nsRNAi or Hrg1 RNAi and fed RBCs

(EP, 10:1 RBC:BMDM). Actin is shown as loading

control. See Figure S4D for Hrg1 immunoblot. See

also Figure S4.
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in vivo in conditions of protoporphyrin IX accumulation and

chronic hemolysis.

Hrg1 Mediates Heme Transport from the
Phagolysosome during Erythrophagocytosis
We hypothesized that Hrg1 recruitment to the phagolysosomal

membranes may be connected to its function as a heme trans-

porter. If this hypothesis were correct, then Hrg1 must transport

heme from the lumen into the cytosol based on its membrane

orientation and topology (Yuan et al., 2012), and downstream

markers that are induced during EP would be dependent on

Hrg1 function (Delaby et al., 2008; Marro et al., 2010). To

substantiate this proposition, we knocked down Hrg1 by siRNA.

Because Hmox1 and Fpn1 mRNA inductions signify heme and

iron availability during EP, we assessed the response of these

markers to Hrg1 siRNA. siRNA treatment resulted in greater

than 75% depletion in Hrg1 mRNA and protein levels in BMDM

grown in heme-depleted culture media (Figures 4A and 4B, Fig-

ure S4A). Strikingly, Hrg1 knockdown resulted in a significant

attenuation of Hmox1 and Fpn1 mRNA induction during EP

(Figures 4C and 4D, Figures S4B and S4C). This suppression

prevailed in the presence of the iron chelator DFO, confirming
Cell Metabolism 17, 261–270
that both heme and iron regulate Hrg1.

Importantly, knockdown of Hrg1 during

EP resulted in a concomitant reduction

in ferritin accumulation (Figure 4E and

Figure S4D). These results unequivocally

demonstrate that Hrg1 is essential for

heme transport from the phagolysosome

during EP and is genetically upstream
from Hmox1, Fpn1, and ferritin, known markers of heme-iron

recycling.

Missense Polymorphisms in Human HRG1 Result in
Defective Heme Transport
To determine whether genetic variations in humanHRG1may be

modifiers of iron metabolism, we searched the NHLBI Exome

Sequencing Project (ESP 5400 and ESP 6500SI) and found three

missense variants in HRG1—G73S (frequency in population,

0.0309%), S82L (0.0309%), and W115C (0.0279%). These three

variants were present in European Americans (EAs) but not in

African Americans (AAs). However, the ESP database can be

biased because they selectively remove extremely rare variants

and samples that have first- to third-degree kinship to ensure

sampling of unrelated DNA. To identify additional missense vari-

ants, we sequenced coding regions and intron-exon boundaries

in DNA obtained from patient cohorts with unexplained micro-

cytic anemia. A single sequence variant in HRG1/SLC48A1

was identified (c. 107C > T, P36L) in an AA proband who was

also a compound heterozygote for mutations in TMPRSS6 and

thus had iron refractory iron deficiency anemia (IRIDA) (Finberg

et al., 2008); the patient’s unaffected mother was also a carrier
, February 5, 2013 ª2013 Elsevier Inc. 265
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for the P36L variant and a TMPRSS6 allele. Furthermore, we

sequenced Coriell Control DNA panels of 50 AA and 50 EA and

found two additional AA samples that were carriers for the

P36L variant. This polymorphism was not identified in EA.

Amino acid sequence alignments revealed that only trypto-

phan 115 and proline 36 are highly conserved in vertebrate

HRG1 (Figure S5A). Topology modeling of vertebrate HRG1

predicts W115 to be located in the center of the fourth trans-

membrane domain (TMD) while P36 lies within a stretch of five

amino acids (YRQPG) in the first exoplasmic (E1) loop between

TMD 1 and TMD 2 (Figure 5A). The presence of a central turn-

inducing proline within short luminal helical hairpins between

TMD segments is a key topogenic determinant of membrane

proteins (Monné et al., 1999).

To assess the significance of each of the amino acid substitu-

tion, we exploited growth assays in yeast. Saccharomyces cere-

visiae hem1D strains are unable to grow in aerobic conditions

due to a genetic defect in the heme biosynthesis enzyme d-ami-

nolevulinic acid synthase. However, the hem1D growth defect

can be rescued by supplementation of the growth medium

with either d-aminolevulinic acid or low amounts of exogenous

heme (0.25 mM) plus HRG1 expression (Yuan et al., 2012).

Neither G73S nor S82L had any effect on the growth of hem1D

yeast, while W115C showed a modest effect on growth (Fig-

ure S5B). However, the P36L variant showed a severe reduction

in yeast growth compared to wild-type HRG1 at both 0.25 and

1 mM heme.

To further explore the functional consequence of the P36

substitution in HRG1, we generated single-copy integrants of

HRG1 in hem1D yeast which expressed equivalent levels of

wild-type and P36L proteins (Figure S5C). The P36L variant

was unable to rescue the growth of hem1D, even in the presence

of 10 mM heme, whereas wild-type HRG1 restored growth of

yeast with as little as 0.25 mM heme (Figure 5B). Unlike wild-

type HRG1 (p < 0.0001), P36L did not alter intracellular heme

levels (p > 0.05), as b-galactosidase activity remained un-

changed in yeast expressing the CYC1::lacZ promoter-reporter

fusion (Figure 5C). b-galactosidase activity reflects the avail-

ability of regulatory pools of cytoplasmic heme to activate

CYC1 expression (Yuan et al., 2012).

To evaluate the significance of the P36L substitution in vivo,

we utilized a vertebrate animal model. We have previously

reported that transient knockdown of zfhrg1a with antisense

morpholino (MO2) in zebrafish embryos results in a severe

erythropoietic defect that can be rescued by coinjection with

C. elegans HRG1 (Rajagopal et al., 2008). Coinjection of wild-

type zfhrg1a with MO2 significantly rescued the morphant

anemia phenotype (p < 0.01), but the P34L variant, the polymor-

phic ortholog of the human P36L variant, was unable to rescue

the hematological defects (p > 0.05; Figure 5D, and Figure S5D).

A Hemoprotein Reporter in Mammalian Cells
Interrogates Heme Availability and P36L Functionality
The results from yeast and zebrafish suggest that the P36L

variant is defective in heme transport. To corroborate this finding

during EP in mouse BMDM, we created a hemoprotein reporter

which can be used in a robust assay to directly evaluate intracel-

lular heme levels. We chose the horseradish peroxidase (HRP)

enzyme because it contains a heme cofactor, and as such,
266 Cell Metabolism 17, 261–270, February 5, 2013 ª2013 Elsevier In
perturbations in cellular heme levels result in a concomitant

change in HRP activity that is easily measured by in-gel assays,

in situ histochemistry, or plate assays (Veitch, 2004). To confine

HRP to the secretory compartment, we incorporated a Golgi

targeting sequence from galactosyltransferase into the amino

terminus of HRP (Bard et al., 2006). HRP activity in HEK293

cell lines was directly proportional to both exogenous and

endogenously synthesized heme (Figure 5E). Succinyl acetone

significantly attenuated HRP activity, while supplementation of

heme to the growth medium greatly enhanced HRP activity (Fig-

ure 5E). Importantly, HRP activity was directly dependent on

heme because iron chelation by DFO did not attenuate HRP

activity (Figure 5E). This result was reproducible in BMDM, as

HRP activity was enhanced in a dose-dependent manner in

response to heme supplementation in the growth medium

(Figure 5F).

To test whether the P36L polymorphism alters heme transport,

we transduced BMDM with adenoviral vectors driving the ex-

pression of HRG1, Golgi-HRP, or both (Figures S5E and S5F).

As expected, the activity of HRP was significantly enhanced

in the presence of either heme supplementation or EP in cells

that overexpressed wild-type HRG1 (Figures 5G and 5H, p <

0.0001). Consistent with our studies in yeast and zebrafish, the

P36L variant failed to activate HRP above vector controls under

either condition (p > 0.05), suggesting that this variant is unable

to function normally. Notably, this difference in function was not

because of reduced expression or aberrant intracellular localiza-

tion, as immunolocalization experiments revealed comparable

levels and similar localization patterns of wild-type and P36L

proteins in adenoviral transduced BMDM (Figure S5G). Alto-

gether, our studies in yeast, zebrafish, and mouse macrophages

provide compelling evidence that the P36L missense variant is

a dysfunctional transporter.

DISCUSSION

The importance of iron recycling is emphasized by the fact that

the majority of body iron required to produce new RBCs is

acquired by recycling iron derived from heme contained within

hemoglobin from senescent RBCs (Andrews, 1999). Although

several genes involved in iron recycling have been identified,

including Nramp1 (Vidal et al., 1996), Nramp2/DMT1 (Fleming

et al., 1997; Gunshin et al., 1997), heme oxygenase 1, and ferro-

portin 1 (Abboud and Haile, 2000; Donovan et al., 2000; McKie

et al., 2000), compelling cell biological evidence has supported

the existence of a heme transporter on the macrophage phago-

lysosomal membranes, but none have been found to date.

Studies have shown that proteolytic degradation of hemoglobin

in the phagolysosome results in the release of heme, which is

subsequently degraded by heme oxygenase enzymes to yield

biliverdin, carbonmonoxide, and iron (Maines, 1997). The catab-

olism of heme during EP (Marro et al., 2010) is mediated primarily

by the induction of Hmox-1, an enzyme tethered to the endo-

plasmic reticulum membranes with the active site facing the

cytosol (Gottlieb et al., 2012). This model dictates that heme

must be transported from the phagolysosome into the cytosol

for catabolism and iron release (Figure 5I). Evidence exists

that cytosolic labile pools of heme increase following EP. For

example, Delaby et al. (Delaby et al., 2008) have previously
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Figure 5. The P36L Polymorphism in Human and Zebrafish HRG1 Results in Defective Heme Transport in Yeast, Zebrafish, and BMDM

(A) Topology of human HRG1. The arrows indicate the polymorphic positions.

(B) The P36L human variant fails to rescue the growth of the hem1D(6D) yeast strain under low heme concentrations. hem1D(6D) yeast strains stably expressing

either pYes-DEST52 vector control, hHRG1-HA, or hHRG1 P36L-HAwere grown overnight in 2%w/v raffinose SC (�His) medium and spotted in serial dilution on

2%w/v raffinose SC (�His, + 0.4%w/v galactose) plates supplemented with 0.25 mMor 10 mMhemin. (+) positive control, + 0.4%w/v glucose, + 250 mMALA; (�)

negative control, + 0.4% galactose, �ALA, �hemin. Plates were incubated at 30�C for 3 days before imaging.

(C) The P36L polymorph is defective in heme transport in yeast. hem1D(6D) yeast strains stably expressing either pYes-DEST52 vector control, hHRG1-HA, or

hHRG1 P36L-HA were cotransformed with pCYC1-LacZ and grown in 2% w/v raffinose SC (�His, �Trp) medium for 12 hr, washed, and grown in 2% w/v

raffinose SC (�His, �Trp, + 0.4% w/v galactose) medium supplemented with 1 mM or 2.5 mM hemin. Galactosidase activity (Miller units) was measured in cell

lysates. Statistical analysis is as follows: n = 3, vector versus hHRG1-HA p < 0.0001, vector versus P36L-HA p > 0.05; error bars represent SEM.

(D) The P34L variant of zebrafish hrg1a is unable to rescue the hematological defects associated with hrg1a MO2 (hrg1a MO2 + zf hrg1a P34L versus hrg1a

MO2, p > 0.05) compared to wild-type zfhrg1a (hrg1aMO2 + zf hrg1a versus hrg1aMO2, p < 0.01). Zebrafish embryos injected with hrg1aMO2 (2.7 ng/ embryo)

exhibit a hematological defect (hrg1a MO2 versus uninjected, p < 0.001; see Figure S8B). Rescue experiments were performed by coinjecting hrg1a MO2 with

120 pg/embryo of hrg1a mRNA or 120 pg/embryo of hrg1a P34L mRNA in one to two cell-stage embryos. Following O-dianisidine staining at 48 hpf (hours

postfertilization), the numbers of affected embryos showing erythroid defects were counted;�150 embryos were analyzed per morpholino treatment. The graph

shows the percentage of morphants (erythroid defect) and wild-type (no erythroid defect) embryos. Error bars represent the SEM.

(E) Golgi HRP activity is dependent on heme. HEK293 cells were grown in HDmedia (�) and pretreated with 100 mMDFO or 0.5 mM succinyl acetone (SA) where

indicated. Following transfection with a construct expressing either vector control or Golgi-HRP, cells were exposed to 2 mM heme:arginate for 24 hr prior to

harvesting. Golgi-HRP activity from lysates was assessed using on-blot chemiluminescence following SDS-PAGE. HRP protein was detected on a separate

immunoblot using a rabbit a-HRP antibody. Actin is shown as a loading control.

(F) Dose response of HRP activity in BMDM transduced with adenovirus expressing Golgi-HRP in the presence of the indicated concentrations of heme. Inset

represents data for 0–5 mM heme in enlarged format.

(G and H) Golgi-HRP activity in BMDM treated with 0.5 mM heme:arginate (G) or fed RBCs at a 1:1 RBC:BMDM ratio (H). BMDM were cotransduced with

adenovirus expressing Golgi HRP and either pShuttle-CMV vector, hHRG1-HA, or hHRG1 P36L-HA (see Figures S5E and S5F). Cell lysates were assessed for

peroxidase activity (mU/ml). Values were normalized for total protein levels of corresponding lysates. Statistical analysis is as follows: HRP assay heme-treated

samples, n = 9, vector versus hHRG1-HA p < 0.0001, vector versus P36L-HA p > 0.05; EP-treated samples, n = 9, vector versus hHRG1-HA p < 0.0001, vector

versus P36L-HA p > 0.05; error bars represent the SEM (C, G, and H), values with different letter labels are significantly different (p < 0.05).

(I) Proposed model for HRG1-mediated heme transport in macrophages. Following phagocytosis of a senescent RBC by a macrophage cell, the RBC is

sequestered in the phagolysosomal compartment and degraded via the activity of various enzymes, yielding the release of heme. During EP, HRG1 traffics from

the endolysosomal compartment to the phagolysosomal membrane, where it functions to transport heme into the cytosol. Heme may be delivered to three

separate pathways: (1) degradation by the HMOX1/2 enzymes, resulting in the release of iron, which may be exported back into the circulation via ferroportin

(FPN1) or stored into ferritin (FTN); (2) incorporation in toto into hemoproteins; or (3) export via FLVCR. See also Figure S5.
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demonstrated that the transcription of Hmox1 and Fpn1 is

specifically regulated by heme following EP in BMDMs. Addition-

ally, Hmox1�/� mice (Gottlieb et al., 2012) have little or no

resident splenic and liver macrophages, possibly because of

cytotoxic heme accumulation following EP (Kovtunovych et al.,

2010).

We hypothesized that the human homolog ofC. elegansHRG1

might be the phagolysosomal heme transporter based on the

following rationale. First, both worm and human proteins bind

and transport heme (Rajagopal et al., 2008). Second, HRG1

homologs have low primary amino acid sequence identity

(�20%) but retain overall topological conservation and strategi-

cally placed heme-binding residues (Yuan et al., 2012). Third,

worm and human HRG1 proteins colocalize with LAMP1 and

the small GTPases Rab7 and Rab11 in HEK293 cells (Rajagopal

et al., 2008), markers known to contribute to the mature phago-

lysosome (Desjardins et al., 1994; Tjelle et al., 2000; Vieira et al.,

2003). Fourth, hemoglobinized RBCs are specified but cannot be

maintained when hrg1 is knocked down in zebrafish. Lastly,

ectopic expression of HRG1 in Friend mouse erythroleukemia

cells shows enhanced uptake of ZnMP, a fluorescent heme

analog (Rajagopal et al., 2008). To test our hypothesis, we

assessed the role of HRG1 in the RES during EP. We find that

Hrg1 is abundantly expressed in the macrophages of the RES

and localizes to the phagolysosomal membranes—a tissue

and location highly relevant to heme-iron recycling, and consis-

tent with the topological orientation of Hrg1 for heme transport

from the lumen into the cytosol. These cell-biological studies

are further supported by the concomitant increase in Hrg1

mRNA and protein during EP, which parallels the regulation of

Hmox1 and Fpn1 (Delaby et al., 2005, 2008).

Importantly, Hrg1 depletion by siRNA results in a reduction in

the regulatory heme pools, as demonstrated by the suppression

of Hmox1, Fpn1, and ferritin inductions during EP (Delaby et al.,

2008; Marro et al., 2010). Consistent with this finding, ectopic ex-

pression of HRG1 in BMDM results in enhanced cellular heme

availability during EP as measured by a significant increase in

HRP enzymatic activity, a synthetic Golgi-targeted hemoprotein

reporter. These results are recapitulated in vivo by inducing a

transient increase in heme by phenylhydrazine injection, or treat-

ment with heme or damaged RBCs in mice. All three treatments

cause a dramatic increase in Hrg1 levels in resident macro-

phages of the liver, spleen, and bone marrow. In line with these

results, a recent study showed that Hrg1 is upregulated in

splenic macrophages derived from mice that have been chemi-

cally induced to mimic the anemia of inflammation and chronic

disease (Prince et al., 2012). The significance of the Hrg1

response to conditions of increased physiological demand on

the RES is further emphasized in the hypomorphic Fechm1Pas

mouse model of erythropoietic porphyria (Davies et al., 2005).

Although the exact mechanism(s) regulating Hrg1 during hemo-

lytic anemia is not well understood, recent studies have iden-

tified binding sites for the heme-dependent transcriptional

repressor BACH1 in theHrg1,Hmox1, and Fpn1 gene promoters

(Marro et al., 2010; Sun et al., 2002; Warnatz et al., 2011). Taken

together, these studies establish HRG1 as a critical component

of the heme-iron recycling pathway in the RES (Figure 5I).

To address the possibility that inherited mutations in HRG1

could be associated with human disease, we screened DNA
268 Cell Metabolism 17, 261–270, February 5, 2013 ª2013 Elsevier In
samples for rare variants and found a P36L variant in the AA

population and three additional missense variants in EAs from

the Exome Variant database. Results from our studies in yeast,

zebrafish, and mouse macrophage show that the P36L variant

is defective in heme transport. Previous studies in zebrafish

have shown that HRG1 is critical for the maintenance of erythro-

poietic cells and the central nervous system (Rajagopal et al.,

2008). Modest reduction of hrg1 mRNA by antisense morpholi-

nos in zebrafish embryos results in a hypomorphic morphant

with only mild anemia, whereas a severe knockdown of hrg1

causes developmental defects including hydrocephalus and a

curved body with shortened yolk tube (B. Paw and I.H., unpub-

lished data). These variations in hrg1 phenotypes in zebrafish

morphants may represent genetic alleles of HRG1 hypomorphs

in the human population. We speculate that polymorphisms in

HRG1 may be an important genetic determinant in inherited

iron disorders in humans, including, for example, in the so-called

‘‘African Iron Overload’’ (AIO) or ‘‘Bantu Siderosis,’’ (Gordeuk

et al., 2003). Based on the results from our studies, we predict

that Hrg1 knockout in mammals will reveal iron retention in

macrophages and secondary systemic iron overload pheno-

types. Screening for mutations in HRG1 in well-characterized

cohorts of patients will provide further insight into the physiolog-

ical significance of HRG1 in genetic disorders of iron metabolism

(Adams et al., 2005; McLaren et al., 2003). Given the striking

similarities between heme utilization from senescent RBC in

macrophages and heme transport from a diet rich in red meat

in enterocytes (Severance et al., 2011; West and Oates, 2008),

it is conceivable that HRG1 may function as a heme transporter

in the intestine.
EXPERIMENTAL PROCEDURES

Animal Strains, Cell Culture, and Reagents

All animal experiments were approved by the University of Maryland Institu-

tional Animal Care and Use Committee and by the Animal Care and Use

Committee at Children’s Hospital (Boston, MA). C57BL/6J or 129/SvEvTac

mice were purchased from Jackson Laboratories or Taconic, respectively.

Hrg1 protein expression in mice was induced by three methods. Mice were

injected intraperitoneally with 3 mg/20 g weight phenylhydrazine hydrochlo-

ride (Aldrich) or equivalent volume PBS control. Furthermore, 1 mg total

heme (Frontier Scientific) as heme:arginate (1 mM:10 mM [pH 7.5]) or arginine

vehicle alone was injected retro-orbitally. Finally, whole blood was collected

from C57BL/6J donor animals into Lithium-Heparin Microtainer tubes (Becton

Dickinson), washed extensively with PBS, and treated with 0.2 mMCuSO4 and

5 mM sodium-ascorbate (Sigma) for 60 min at 37�C. Cells were washed two

times in excess 5 mM EDTA (PBS) and two times in excess PBS and brought

up to 50% HCT in sterile PBS, and 200 ml damaged or untreated RBCs were

injected retro-orbitally. Animals were euthanized 24 hr after injection and

tissues harvested.

Isolation and culture of bone marrow from the femur of C57BL/6 mice was

carried out as described elsewhere (Marim et al., 2010). Briefly, differentiation

of fresh bone marrow cells was carried out in the presence of L929- condi-

tioned media (LCM) as a source of granulocyte/macrophage colony-stimu-

lating factor (Englen et al., 1995). Differentiation media composition is as

follows: RPMI 1640 (Invitrogen) supplemented with 30% LCM, 20%heat-inac-

tivated fetal bovine serum (FBS, Atlanta Biologicals), 100 U/ml penicillin,

100 mg/ml streptomycin, and 2 mM L-glutamine (Invitrogen). L-929 cells

were purchased from the American Type Culture Collection (ATCC). For

production of LCM, L-929 cells were grown in the presence of RPMI 1640 sup-

plemented with 10% heat-inactivated FBS, 100 U/ml penicillin, 100 mg/ml

streptomycin, and 2 mM L-glutamine for 30 days. Media was collected by

sterile filtration and stored at �20�C for later use in BMDM differentiation
c.
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and culture media. In all experiments described below, BMDMs were

cultured in the presence of heme-depleted serum (HD) media as untreated

control. HD media was prepared similarly to differentiation media with the

exception of substituting 20% heme-depleted FBS for FBS. Heme depletion

was achieved by treating FBS with ascorbic acid for �7–8 hr, followed by

dialysis against PBS and filter sterilization. The depletion of heme from

the serum was monitored by measurement of the optical absorbance at

405 nm. Depletion was considered successful when the absorbance of serum

was reduced at least 50% following ascorbic acid treatment (Sassa and

Nagai, 1996).

Unless otherwise noted, all chemicals and reagents were obtained from

Sigma-Aldrich. Hemin and zinc protoporphyrin IX (ZnPPIX) were purchased

from Frontier Scientific, Inc. Fresh 1 mM solutions of heme:arginate and

ZnPPIX:arginate with 10 mM arginine were prepared by dilution in 0.2 M

KOH/100% ethanol (1:1, v/v). Iron nitrolotriacetic acid (Fe:NTA) solution was

prepared as a 1 mM stock with NTA (Sigma-Aldrich), and ferric chloride hexa-

hydrate (molar ratio of 1:4). HRG1 antibody serum was produced in rabbit

using the C-terminal 18 amino acid peptide sequence of human HRG1 as

antigen (Epitomics, Inc.). Positive serum samples were selected based on

high specificity to HRG1 as well as low unspecific background as tested by

western blot analysis. Preimmune serum from the same rabbit was used as

a negative control.

Statistical Analysis

Statistical significance was calculated by two-way analysis of variance with

the Bonferroni multiple comparison test using Prism version 5.0 (GraphPad,

San Diego, CA). Data values are presented as mean ± SEM. A p value <

0.05 was considered significant.

Additional material is available in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article at http://dx.doi.org/10.

1016/j.cmet.2013.01.005.
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