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SUMMARY

Several lines of evidence predict that specific
pathways must exist in metazoans for the escorted
movement of heme, an essential but cytotoxic
iron-containingorganic ring,within andbetweencells
and tissues, but these pathways remain obscure. In
Caenorhabditis elegans, embryonic development is
inextricably dependent on both maternally derived
heme and environmentally acquired heme. Here, we
show that the multidrug resistance protein MRP-5/
ABCC5 likely acts as a heme exporter, and targeted
depletion ofmrp-5 in the intestine causes embryonic
lethality. Transient knockdown of mrp5 in zebra-
fish leads to morphological defects and failure to
hemoglobinize red blood cells. MRP5 resides on the
plasma membrane and endosomal compartments
and regulates export of cytosolic heme. Together,
our genetic studies in worms, yeast, zebrafish, and
mammalian cells identify a conserved, physiological
role for a multidrug resistance protein in regula-
ting systemic heme homeostasis. We envision other
MRP family members may play similar unanticipated
physiological roles in animal development.

INTRODUCTION

Heme is almost ubiquitously required by living organisms as a

prosthetic group in proteins (Hamza and Dailey, 2012). Heme

is synthesized in the mitochondrial matrix but must be trafficked

to various subcellular compartments for incorporation into

hemoproteins in the cytoplasm, endoplasmic reticulum/Golgi,

lysosomes, and peroxisomes (Severance and Hamza, 2009).

However, unescorted movement of heme within a cell is inher-

ently hazardous due to the reactivity of free heme. It follows

that cells must have specific pathways for the directed move-

ment of heme within and between cells and tissues, but these

intra- and intercellular pathways remain poorly defined (Hamza

and Dailey, 2012; Severance and Hamza, 2009).

The existence of heme effluxers is all but certain, given that

free heme is toxic to cells and must be escorted to various sub-

cellular compartments. One such protein, the major facilitator

superfamily member FLVCR1, has been identified (Keel et al.,
2008; Quigley et al., 2004). FLVCR1 null mice lack effective eryth-

ropoiesis and die as embryos (Keel et al., 2008). Interestingly,

mammalian Flvcr1 encodes two FLVCR isoforms: FLVCR1a

localizes to the plasma membrane, while FLVCR1b localizes to

mitochondrial membranes (Chiabrando et al., 2012). The eryth-

ropoietic defect observed in FLVCR1 mutant mouse embryos

has been attributed to the inability of FLVCR1b to export heme

from the mitochondria into the cytosol. However, exactly how

cytosolic heme reaches hemoproteins located within subcellular

organelles remains undefined (Fleming and Hamza, 2012).

We have exploited Caenorhabditis elegans as a genetic model

organism because this roundworm is a heme auxotroph (Rao

et al., 2005). C. elegans is dependent on both maternally derived

heme for embryonic development and heme acquired from the

diet during larval growth (Rao et al., 2005). Heme is imported

into the intestine via the conserved heme permease HRG-1

and its paralog, HRG-4 (Figure 1A) (Rajagopal et al., 2008). The

intercellular heme-trafficking protein HRG-3 is secreted from

the intestine and carries heme to developing embryos (Chen

et al., 2011). HRG-2 is an extraintestinal, heme-binding mem-

brane protein that facilitates heme utilization in the worm hypo-

dermis (Chen et al., 2012). How does intestinal heme, derived

from the environment, get delivered to hemoproteins in extrain-

testinal tissues? Are these intercellular heme transport pathways

found in vertebrates? Herein, we show that a multidrug resis-

tance protein MRP-5/ABCC5 likely acts as a cellular heme

exporter and is essential for viability in C. elegans. This conclu-

sion is supported by our genetic studies in yeast, C. elegans,

zebrafish, and mammalian cell culture models, which ascribe a

physiological role for a multidrug resistance protein in regulating

systemic heme homeostasis in metazoa.
RESULTS

HRG-3-Independent Pathway for Heme Transport
Our previous studies implicated HRG-3 in the directed trafficking

of heme to extraintestinal tissues, including embryos (Figure 1A).

However, hrg-3 mutant embryos are viable unless subjected to

severe maternal heme limitations in utero (Chen et al., 2011). In

fact, when worms are grown in the presence of >6 mM heme,

hrg-3 mRNA is undetectable (Chen et al., 2011). Thus, HRG-3

serves as an inducible mechanism for redirecting heme stores

only under heme-limiting conditions. These results would also

predict that, in the absence of HRG-3, an alternate pathway

exists in C. elegans.
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Figure 1. mrp-5 Is an Essential Regulator of C. elegans Heme Homeostasis

(A) Current model of heme homeostasis pathways in C. elegans. HRG-1/4 proteins import heme into the cytosol of intestinal cells, HRG-3 is secreted from the

intestine for heme delivery to other tissues, and HRG-2 is a resident endoplasmic reticulum protein involved in heme utilization within the hypodermis.

(B) Loss ofmrp-5 results in a heme depletion signal that can be rescued by dietary heme. Left: GFP fluorescence (60–120 worms per treatment) quantified using

COPAS BioSort in IQ6011 [Phrg-1::GFP::unc-54 30 UTR; unc119(ed3); unc-119 rescue fragment] exposed to vector, hrg-4, or mrp-5 by feeding RNAi at varying

heme concentrations. ***p < 0.001 when compared to vector control under the same conditions (two-way ANOVA, Bonferroni post test). Right: images of IQ6011

RNAi worms supplemented with 50 mM heme. Error bars represent mean ± SEM.

(C) Loss of mrp-5, and no other mrp, results in a heme depletion signal in the heme sensor strain IQ6011. GFP fluorescence (60–120 worms per treatment)

quantified from the hrg-1 transcriptional fusion line (IQ6011) exposed to vector or RNAi against an mrp gene at 25 mM heme. GFP was quantified using COPAS

BioSort. ***p < 0.001 when compared to vector control under the same conditions (one-way ANOVA, Bonferroni post test). Error bars represent mean ± SEM.

(D) RNAi of FLVCR1 homologs in C. elegans does not activate a heme depletion signal in IQ6011. GFP fluorescence in IQ6011 was measured as in Figures 1B

and 1C. ***p < 0.001 when compared to vector control under the same conditions (one-way ANOVA, Bonferroni post test). Error bars represent mean ± SEM.

See also Figure S1.

Cell Metabolism

Metazoan Heme Transport

Please cite this article in press as: Korolnek et al., Control of Metazoan Heme Homeostasis by a Conserved Multidrug Resistance Protein, Cell Meta-
bolism (2014), http://dx.doi.org/10.1016/j.cmet.2014.03.030
We postulated that membrane-bound heme transporters

would be suitable candidates for regulating systemic heme

homeostasis in the worm and consequently impact the regula-

tion of other heme-responsive genes. By individually depleting

288 heme-responsive genes, which included 41 genes encoding

transmembrane-domain containing proteins, we uncovered

mrp-5 (F14F4.5) as a potent regulator of the C. elegans trans-

genic heme sensor strain IQ6011. The IQ6011 strain expresses

GFP in the intestine from the heme-responsive hrg-1 promoter;

GFP levels in this strain are inversely correlated with heme levels

in the worm (Rajagopal et al., 2008; Sinclair and Hamza, 2010).

Depletion of mrp-5 in IQ6011 by RNAi resulted in significantly

greater GFP levels compared to control RNAi, indicating that

loss ofmrp-5 results in the animal sensing less heme (Figure 1B;

Severance et al., 2010). Importantly, this heme depletion signal

could be rescued in a concentration-dependent manner by sup-

plementation with dietary heme (Figure 1B). The increased GFP

signal observed by knockdown of the intestinal heme importer
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hrg-4 could be completely suppressed with 50 mM heme, while

the mrp-5 RNAi signal persisted even at 500 mM, indicating a

far more severe defect (Figure 1B). In addition, microarray anal-

ysis and quantitative RT-PCR studies show that mrp-5 is itself a

heme-responsive gene, because its mRNA increased over 3-fold

under low heme conditions (Severance et al., 2010). Indeed,

in silico analysis of the putative mrp-5 promoter revealed the

presence of a canonical 23 bp heme response element, which

we have previously shown is necessary and sufficient to mediate

the heme-dependent regulation of hrg-1 in the worm intestine

(Sinclair and Hamza, 2010).

Although the C. elegans genome contains eight mrp genes

(Figure S1, red boxes, available online), mrp-5 is the only mrp

family member that significantly alters GFP expression in

IQ6011 (Figure 1C) and is the sole mrp that is transcriptionally

responsive to heme (Severance et al., 2010). Moreover, sys-

tematically depleting each of the five FLVCR worm homologs

had little or no effect on GFP levels in the heme sensor worm



Figure 2. Worm mrp-5 Is Essential for Embryonic Development and Larval Growth

(A) MRP-5membrane topology showing an N-terminal membrane-spanning domain (MSD1) consisting of six TMDs, followed by a cytosolic ATP binding cassette

(ABC) domain, a second MSD (MSD2), and a second ABC domain. Segments of MRP-5 that are deleted in the ok2067 allele are shown in red.

(B) Dead progeny of vector control or mrp-5(RNAi) worms. ***p < 0.001 when compared to vector control worms under identical conditions, n = 3 (two-way

ANOVA, Bonferroni post test). Error bars represent mean ± SEM.

(C) Top: the C. elegans mrp-5 gene contains 20 exons across 7 kb of the X chromosome. mrp-5 mutants harbor a 1.2 kb deletion (ok2067) spanning exons 14

through 17. Bottom: wild-type andmrp-5 broodmates were grown to gravid adult stage at 200 mMheme. Their F1 progeny were placed as synchronized L1 larvae

on plates seeded with OP50 bacteria with or without 200 mMadded heme. Representative images of F1 worms 4 days posthatching are shown. Scale bar, 20 mM.

(D) ZnMP staining in vector control ormrp-5(RNAi) worms. Top: worms were exposed to RNAi from L1 to L4 larval stages, pulsed with 60 mM ZnMP for 3 hr, and

imaged using confocal microscopy. Bottom: quantification of ZnMP staining (mean ± SEM of ten worms). *p < 0.05 when compared to control worms (one-way

ANOVA, Bonferroni post test).

See also Figure S2.
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(Figure 1D) (Keel et al., 2008; Lipovich et al., 2002; Quigley

et al., 2004).

MRP-5 Is Essential for Embryonic and Larval
Development
In worms, mrp-5 (multidrug resistance protein 5) encodes an

ABC transporter of the MRP/ABCC family. C. elegans MRP-5

is predicted to include two membrane-spanning domains

(MSDs), each containing six transmembrane helices, and two

intracellular ATP binding cassette (ABC) domains (Figure 2A)

(Borst et al., 2000). Worms were analyzed for growth and devel-

opmental phenotypes after RNAi depletion ofmrp-5. When syn-

chronized larvae (P0) were fedmrp-5RNAi bacteria, they showed

no major developmental defects and were able to reach adult

gravid stage and lay eggs. However, 80% of the F1 eggs laid

by P0 worms failed to hatch, and the small number that did hatch

arrested as L1 larvae (Figure 2B). This striking embryonic lethal

phenotype could be rescued by supplementation of the bacterial

food with exogenous heme; 95% of F1 progeny hatched and
became adults in the presence of 500 mMheme. Together, these

results indicate that mrp-5 is required for embryonic develop-

ment in C. elegans.

The strain VC1599 contains a deletion in mrp-5(ok2067)

located on the X chromosome, spanning exons 14 through 17

(Figure 2C, top panel; Figure S2A), but is genetically balanced

by a marked chromosomal translocation because mrp-5

mutant worms are embryonic lethal (Edgley et al., 2006). The

mrp-5(ok2067) deletion removed 176 amino acids, including

three transmembrane helices (Figure 2A). Consequently, the

predicted topology of the mutant protein will contain only

nine transmembrane helices, resulting in a dysfunctional pro-

tein with the second ABC domain located on extracellular sur-

face (Figure S2B). Although RT-PCR and sequencing analysis

reveals the presence of mrp-5 mRNA in mutant worms (Fig-

ure S2C), depletion of mrp-5 by RNAi in the mrp-5(ok2067)

mutants does not enhance or result in additional pheno-

types, suggesting that mrp-5(ok2067) is likely a null mutation

(Figure S2D).
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We tested whether supplementary heme could rescue the em-

bryonic lethality of mrp-5 mutants and found that when VC1599

worms were crossed to wild-type N2 worms to eliminate the

balancer, viable F2 homozygous mrp-5 mutant worms were ob-

tained and easily propagated, but only when worms were grown

on food supplemented with >200 mM heme. When grown on

plates containing bacteria with no added heme, mrp-5(ok2067)

homozygous mutant larva arrested at midlarval stages, indi-

cating that mrp-5 is required during larval development (Fig-

ure 2C, lower panel). To determine if the rescue ofmrp-5 lethality

by dietary heme was due to the presence of redundant mecha-

nisms for heme transport, we depleted FLVCR homologs in the

mrp-5(ok2067) background. Only one, B0416.5, showed a signif-

icantly enhanced phenotype in the mrp-5 mutant worms when

depleted (Figure S2E); however, this effect could not be rescued

in a dose-dependent manner by exogenous heme and is likely

unrelated to heme export from the intestine. It is worth noting

that this experiment does not rule out the presence of other

low-affinity transporters that can compensate for the loss of

mrp-5 or the possibility that at such high dietary concentrations,

heme, which can intercalate into membrane lipids, is traversing

the membrane without the assistance of a transporter.

Because MRP-5 is a member of the ABCC/MRP transporter

family, members of which function as exporters of lipophilic

and organic compounds (Borst et al., 2007; Kos and Ford,

2009), we examined whether MRP-5 was involved in the regula-

tion of heme homeostasis in C. elegans. Worms in which mrp-5

had been depleted showed significantly greater accumulation of

zinc mesoporphyrin IX (ZnMP), a fluorescent heme analog, in

the intestine compared to control worms (Figure 2D). Notably,

VC1599 worms, which are heterozygous for mrp-5, exhibited

haploinsufficiency phenotypes, because they not only accumu-

lated ZnMP in the intestine but were also resistant to the toxic

heme analog gallium protoporphyrin IX, indicating that heme

analogs entered the intestine but were poorly accessible to

extraintestinal cells (Figures S2F and S2G).

MRP-5 Deficiency Prevents Heme Export from the
Intestine
A transcriptional reporter was generated using the putative pro-

moter region of mrp-5 (3 kb upstream of the ATG start codon)

fused to a GFP reporter. Pmrp-5::GFP was expressed at all

developmental stages, with low levels in the hypodermis and in

some neurons, and was consistently highly expressed in the

intestine and pharynx (Figure 3A), confirming published intestinal

and pharyngeal in silico gene expression analysis (Contrino et al.,

2012; McGhee et al., 2007).

To delineate the subcellular localization of MRP-5, GFP was

fused to the C terminus of MRP-5 and expressed from the intes-

tinal vha-6 promoter (Oka et al., 2001). In the polarized worm

intestinal cells, Pvha-6::MRP-5::GFP localized to basolateral

membranes and to intracellular compartments, reminiscent of

basolateral sorting vesicles in C. elegans (Chen et al., 2010) (Fig-

ure 3B; Figures S3A and S3B). Similar localization was observed

for MRP-5::GFP expressed from the endogenous mrp-5

promoter (data not shown). We next determined if the trans-

gene was capable of rescuing the embryonic lethal phenotype

induced by mrp-5 deficiency. RNAi directed against the 30 UTR
of mrp-5 depleted endogenous mrp-5, whereas the MRP-
4 Cell Metabolism 19, 1–12, June 3, 2014 ª2014 Elsevier Inc.
5::GFP transgene, which is expressed with the generic unc-54

30 UTR, was left intact, as confirmed visually by GFP fluores-

cence (data not shown). RNAi against themrp-5 30 UTR resulted

in a significant reduction in embryonic lethality in MRP-5::GFP

transgenic worms, indicating that MRP-5::GFP is a functional

protein (Figure 3C).

Because MRP-5 is expressed in multiple tissues, it is conceiv-

able that mrp-5 depletion in any or all of the tissues may

contribute to the embryonic lethal phenotype of mrp-5 mutant

worms. To address the contribution of each tissue to the mrp-

5 phenotype, we utilized tissue-specific RNAi worm strains.

Worms carrying the rde-1mutation are resistant to RNAi; ectopic

expression of rde-1 from a tissue-specific promoter in the rde-1

mutant background results in RNAi only in that tissue (Qadota

et al., 2007). We depleted mrp-5 in the VP303 (rde-1 rescue

from the intestinal nhx-2 promoter), WM118 (rde-1 rescue from

the muscle myo-3 promoter), and NR222 (rde-1 rescue from

the hypodermal lin-26 promoter) transgenic worm lines. Deple-

tion ofmrp-5 in the intestine fully recapitulated the F1 embryonic

lethality of whole-animal RNAi, while depletion ofmrp-5 either in

the hypodermis ormuscle had no effect on F1 viability (Figure 3D).

The lethality caused by RNAi in the VP303 strain could be

rescued by supplementation with 500 mM heme in the diet.

Thus, the lethality of mrp-5 mutants can be attributed to the

loss of functional MRP-5 specifically in the intestine, even though

mrp-5 is expressed in extraintestinal tissues. This is further sup-

ported by the fact that the MRP-5::GFP transgene expressed

exclusively in the intestine (Pvha-6::MRP-5::GFP) is capable of

rescuing the hatching phenotype associated with depletion of

endogenous mrp-5 (Figure 3C).

We next determined whether MRP-5 deficiency phenotypes

could be overcome by constitutively expressing HRG-3, the

intercellular heme delivery protein, from the intestine. Ectopic

expression of hrg-3 from the intestinal vha-6 promoter was un-

able to rescue the embryonic lethality ofmrp-5 RNAi (Figure 3E).

This was not due to impaired secretion of HRG-3 from the

intestine, because HRG-3::mCherry still accumulated in the ex-

traintestinal coelomocytes when mrp-5 was depleted by RNAi

(Figure S3C).

To evaluate the heme status in an extraintestinal tissue when

mrp-5 is depleted, we utilized Phrg-2::HRG-2::YFP transgenic

worms. The hrg-2 promoter is active only in the hypodermis,

and Phrg-2::HRG-2::YFP is induced in the hypodermis when

heme levels are limiting in that tissue (Chen et al., 2012). Deple-

tion ofmrp-5 resulted in a striking increase inHRG-2::YFP levels,

and its expression was not fully suppressed until wormswere fed

500 mMheme (Figure 3F). By contrast, worms in which hrg-4, the

intestinal heme importer, was depleted did not upregulate Phrg-

2::HRG-2::YFP, indicating that loss of this particular transporter

does not result in limiting heme levels in the hypodermis. Taken

together, these results provide strong evidence that MRP-5 is

the major intestinal heme exporter.

Mrp5 Is Essential for Erythropoiesis in Zebrafish
Vertebrate ABCC5/MRP5 is �38% identical to worm MRP-5

with similar overall membrane topology. Within the ABCC/MRP

family, the lack of an additional amino-terminal MSD (called

MSD0) places ABCC5/MRP5 in a distinct group containing the

ABCC4/MRP4, ABCC7 (CFTR), and ABCC12/MRP9 proteins



Figure 3. Worm mrp-5 Encodes a Putative Intestinal Heme Exporter

(A) GFP expression in IQ5051 [Pmrp-5::GFP::unc-54 30UTR; unc-119(ed3); unc-119 rescue fragment] as determined using confocal microscopy. mrp-5 is

expressed in the hypodermis and some neurons and at higher levels in the pharynx and intestine. P, pharynx; I, intestine; H, hypodermis; E, embryo. Scale

bars, 20 mM.

(B) Transgenic IQ5351 worms [Pvha-6::MRP-5:GFP::unc-54 30UTR; unc-119(ed3); unc-119 rescue fragment] expressing an mrp-5 translational reporter were

imaged by confocal microscopy. Dotted lines indicate apical membrane, dashed lines indicate basolateral membrane, and arrowheads indicate lateral mem-

branes between adjacent intestinal cells. Scale bar, 50 mM.

(C) TheMRP-5::GFP fusion gene can rescue the embryonic lethality ofmrp-5RNAi. RNAi targeting themrp-5ORF causes embryonic lethality in both wild-type N2

and transgenic worms. RNAi against themrp-5 30 UTR results in a less severe embryonic lethal phenotype in N2worms, but this lethality is significantly rescued by

expression of the MRP-5::GFP transgene from either the mrp-5 or the intestinal vha-6 promoter. ***p < 0.001 when compared to wild-type N2 worms under

identical conditions, n = 3 (two-way ANOVA, Bonferroni post test). Error bars represent mean ± SEM.

(D) Intestinal RNAi of mrp-5 recapitulates the embryonic lethality of whole animal mrp-5 RNAi. Wild-type N2 worms and the tissue-specific RNAi strains were

grown on RNAi plates with no added heme. Int, intestinal RNAi; Mus, muscle RNAi; Hyp, hypodermal RNAi; n = 2. See Results and Figure S2 for further strain

information. Error bars represent mean ± SEM.

(E) Ectopic expression of hrg-3 does not rescue the embryonic lethality of whole-animal mrp-5 RNAi. The experiment was performed as in Figure 1C using wild-

type N2 worms and worms ectopically expressing HRG-3 and GFP separated by the SL2 intercistronic sequence [hrg-3(tm2468); Pvha-6::HRG-3::ICS::GFP, unc-

119(ed3); unc-119 rescue fragment] grown on RNAi plates with no added heme. Error bars represent mean ± SEM.

(F) Loss ofmrp-5 activates an extraintestinal heme depletion signal. Left: yellow fluorescent protein fluorescence (60–100 worms per treatment) quantified using

COPAS BioSort in the hrg-2 translational fusion line IQ8122 [Phrg-2::HRG-2:YFP::hrg-2 30 UTR, unc-119(ed3); unc-119 rescue fragment] exposed to vector, hrg-4,

ormrp-5 RNAi at varying heme concentrations. ***p < 0.001, **p < 0.01 when compared to vector control worms (two-way ANOVA, Bonferroni post test). Right:

representative images of worms grown at 1 mM heme from the left panel. Left: error bars represent mean ± SEM.

See also Figure S3.
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(Figure S1, blue box) (Toyoda et al., 2008). Although C. elegans

contains a single mrp-5, the gene has undergone a duplication

event, and two MRP5 paralogs are found in most vertebrates

(Figure 4A). Interestingly, the human genome contains three

paralogs; in addition to ABCC5/MRP5 on chromosome 3,

ABCC11/MRP8 and ABCC12/MRP9 are located in tandem on

chromosome 16 (Yabuuchi et al., 2001). Orthologs of ABCC11/

MRP8 can be found in other eutherians, including primates,
dogs, and cows, but are not found in rodent genomes. In all

analyzed vertebrate species, the closest homolog of C. elegans

mrp-5 is the vertebrate ABCC5/MRP5.

Previous studies with HRG-1 have shown that even though

zebrafish and worm HRG-1 proteins are only �20% identical,

they are functional orthologs (Rajagopal et al., 2008). Because

zebrafish embryos provide a vertebrate animal model to interro-

gate hematological changes as a function of aberrant heme
Cell Metabolism 19, 1–12, June 3, 2014 ª2014 Elsevier Inc. 5



Figure 4. mrp5 Is Required for Zebrafish Erythropoiesis

(A) Phylogenetic analysis of MRP5/ABCC5 clade inC. elegans (orange), zebrafish (red), mice (green), and humans (blue). Sequenceswere aligned using ClustalW,

and a phylogenetic tree was generated using the Neighbor-Joiningmethod inMEGA5. The tree is drawn to scale, with branch lengths in the same units as those of

the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances are in the units of the number of amino acid substitutions per site.

(B) Lateral view of zebrafish mrp5 expression by whole-mount in situ hybridization using antisense probe, 4 days postfertilization. Anterior is to the left. Sense

probe image is shown to indicate background staining. B, brain, N, neural tube.

(C) Knockdown of zebrafish mrp5 using morpholinos (MOmrp5) results in severe anemia, as indicated by reduced staining of o-dianisidine-positive red cells, as

indicated by black arrowheads.

(D) Knockdown of zebrafishmrp-5 using MOmrp5 results in reduced red cell formation. Transgenic embryos expressing GFP from the globin locus control region

(LCR-GFP) were injected with control MO or MOmrp5. Left: on day 2 postfertilization, percent GFP-positive RBCs were analyzed by FACS. x and y axes measure

GFP and forward scatter, respectively; boxed area indicates gate for RBCs. Right: quantification of morphants shown at left; error bars represent mean ± SEM.

For MOmrp5 injection, n = 4. **p < 0.01 for MOmrp5 morphants compared to control morphants under identical conditions (one-way ANOVA, Bonferroni post test).

(E) Lateral view of zebrafish gata1 expression in wild-type, control MO, andMOmrp5morphants by whole-mount in situ hybridization using antisense probe 24 hpf.

Anterior is to the left.

(F) Quantification of anemia rescue in zebrafish coinjected withmrp5 cRNA. ***p < 0.001 for MOmrp5 morphants compared to control morphants under identical

conditions; n = 4. **p < 0.01 for mrp5 morphants coinjected with rescue cRNA when compared to mrp5 morphants with no rescue cRNA under identical con-

ditions; n = 3 (one-way ANOVA, Bonferroni post test).

See also Figure S4 and Table S1.

Cell Metabolism

Metazoan Heme Transport

Please cite this article in press as: Korolnek et al., Control of Metazoan Heme Homeostasis by a Conserved Multidrug Resistance Protein, Cell Meta-
bolism (2014), http://dx.doi.org/10.1016/j.cmet.2014.03.030
homeostasis (Shafizadeh and Paw, 2004), we analyzed the

expression and function of mrp5/abcc5 in zebrafish. Whole-

mount in situ hybridization revealed that mrp5/abcc5 is widely

expressed throughout the embryo, with the greatest expression

in the developing central nervous system (Figure 4B; Figure S4).

To knock down mrp5/abcc5, we injected fish embryos with

morpholinos (MOs) specifically targeted against the ATG start

codon of mrp5/abcc5 (MOmrp5) mRNA. Embryos injected with

MOmrp5 showed severe anemia with very few o-dianisidine-

positive red blood cells (RBCs) compared to embryos injected

with control MOs (Figure 4C). MOmrp5 morphants also exhibited

developmental malformations, including body axis curvature

defects and enlarged hearts. The anemia phenotype was repro-

ducible using splice junction MO, which targeted specific exon-
6 Cell Metabolism 19, 1–12, June 3, 2014 ª2014 Elsevier Inc.
intron junctions (data not shown), resulting in a mutant form of

Mrp5 that would be functionally equivalent to mutation at the

corresponding position in worm mrp-5 (Figure 2C; Figure S2A).

To quantify the severe anemia phenotype, we analyzed levels

of globin-expressing RBCs in the morphant fish. Transgenic

zebrafish expressing GFP from the globin locus control region

(LCR-GFP) were injected with control and mrp5 MOs, and

morphant blood was analyzed 2 days postfertilization (dpf) for

GFP expression. Fish injected with MOmrp5 showed significantly

decreasedGFP-positiveRBCscompared to controlMOfish (Fig-

ure 4D). Correspondingly, gata1, a transcription factor required

for primitive erythropoiesis (Paik and Zon, 2010) was robustly

expressed in wild-type and control MO embryos, but little or

nogata1 stainingwasobserved inMOmrp5morphants (Figure 4E).



Figure 5. Ectopic MRP5 Expression in Yeast Suggests the Protein Plays a Role in Heme Transport

(A) The hem1D yeast strain was transformed with indicated vectors, grown for 12 hr without added heme or ALA and then grown for 24 hr under the indicated

conditions. Yeast growth was assessed by measuring optical density 600 (OD600). Left: uninduced yeast which did not express the transgenes showed no

difference in growth after 24 hr in the presence of 250 mM ALA. Right: yeast expressing heme importers HRG-1 and HRG-4 grow significantly better than control

yeast. Yeast expressing MRP5 grow significantly worse. ***p < 0.001 compared to vector control after 24 hr; n = 3 (two-way ANOVA, Bonferroni post test). Error

bars represent mean ± SEM.

(B) The hem1D yeast strain was transformed, grown overnight without added heme or ALA, and spotted on plates supplemented with 0.5 mM heme. Plates were

incubated at 30�C for 72 hr.

(C) Heme-dependent b-galactosidase activity. The hem1D yeast strain was transformed with pCYC1-LacZ as well as empty vector, ScPUG1, CeMRP-5, or

hMRP5 and grownwith the indicated amount of heme or ALA. Cell lysates were then analyzed for b-galactosidase activity, normalized to vector. ***p < 0.001, **p <

0.01, *p < 0.05 when compared to yeast expressing empty vector under identical conditions; n = 2 (one-way ANOVA, Bonferroni post test). Error bars represent

mean ± SEM.

(D) Heme-dependent ferric reductase activity. The hem1Dfre1Dfre2DPGK1-FRE1 yeast strain was transformed with indicated vectors and grown with the

indicated amount of heme or ALA. Ferric reductase activity fromwhole cells was analyzed. **p < 0.01, *p < 0.05 when compared to yeast expressing empty vector

under identical conditions; n = 2 (one-way ANOVA, Bonferroni post test). Error bars represent mean ± SEM.

(E and F) The hem1D yeast strain expressing (E) CeHRG-4-Flag or CeMRP-5-Flag or (F) CeHRG-4 hemagglutinin (HA) or hMRP5-HA was subjected to indirect

immunofluorescence microscopy using anti-Flag or anti-HA antibodies and imaged by confocal microscopy.
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The MOmrp5 anemia was indeed due to Mrp5/Abcc5 deficiency,

because coinjecting zebrafish with cRNA encoding Mrp5/

Abcc5 significantly corrected the anemia phenotype (Figure 4F;

Table S1). Taken together, these data indicate that mrp5 is

critical for zebrafish erythropoiesis and that MRP5 regulation of

systemic heme homeostasis is likely conserved from worms to

vertebrates.

MRP5 Is a Putative Heme Transporter
To determine whether MRP5 likely transports heme, we ex-

ploited previously established assays in yeast and mammalian

cells. Saccharomyces cerevisiae hem1 mutants are unable to

synthesize d-aminolevulinic acid (ALA), a precursor for heme

synthesis, and grow poorly even in the presence of exogenous
heme due to an inefficient heme uptake system (Protchenko

et al., 2006, 2008). This inadequate growth of hem1D can be

greatly improved by either expression of a heme importer in

the presence of heme or supplementation of ALA to the growth

medium (Yuan et al., 2012). When hem1D yeast express the

C. elegans heme importer HRG-4 (CeHRG-4), they show signif-

icantly improved growth in medium supplemented with 0.5 mM

heme when compared to uninduced controls (Figure 5A) (Yuan

et al., 2012). However, yeast expressing C. elegans MRP-5 or

human MRP5 showed significantly reduced growth. Indeed,

hem1D yeast expressing CeMRP-5 or hMRP5 showed a repro-

ducible growth defect in dilution spot assays on agar plates

(Figure 5B). The reduced growth of yeast expressing CeMRP-

5 or hMRP5 was not due to cell toxicity associated with
Cell Metabolism 19, 1–12, June 3, 2014 ª2014 Elsevier Inc. 7
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overexpression of a large polytopic membrane protein, because

growth was restored when cells were cotransformed with the

heme importer CeHRG-4 (Figure 5B, bottom three rows).

To assess whether MRP5 expression could alter heme levels

in the yeast, wemeasured the activity of b-galactosidase derived

from the lacZ reporter under control of the CYC1 promoter. This

promoter is activated by Hap1, a transcription factor positively

regulated by cytosolic heme levels (Hon et al., 2003). Yeast ex-

pressing CeMRP-5 or hMRP5 showed decreased b-galactosi-

dase activity (Figure 5C), a result consistent with the poor growth

phenotype in the spot assay. This result was reproducible in

yeast grown in the presence of ALA, indicating that MRP5

can also affect availability of endogenously synthesized heme

(Figure 5C, right panels). Interestingly, yeast expressing MRP5

showed lower b-galactosidase activity than cells expressing

the yeast heme effluxer Pug1p (Protchenko et al., 2008).

To evaluate heme availability in the yeast secretory compart-

ment, we measured ferric reductase activity, because Fre1p

acquires a heme cofactor needed for enzymatic activity in the

secretory pathway (Dancis et al., 1990). While Pug1p expression

had minimal effect, yeast expressing CeMRP-5 or hMRP5

showed significantly greater ferric reductase activity in the pres-

ence of heme and ALA (Figure 5D). Although most MRP trans-

porters expressed in yeast localize to the vacuolar membranes

(Paumi et al., 2009), indirect immunofluorescence microscopy

localized CeMRP-5 and hMRP5 primarily to intracellular com-

partments that are distinct from the plasma membrane and the

vacuole (Figures 5E and 5F). These results indicate that when ex-

pressed in yeast, MRP5 proteins are likely capable of exporting

heme from the cytosol into intracellular organelles for delivery to

hemoproteins such as Fre1p.

MRP5 Alters Heme Levels in the Secretory
Compartment
In mammals, MRP5 is expressed almost ubiquitously (Borst

et al., 2007; McAleer et al., 1999; Suzuki et al., 2000), and

Mrp5 knockout mice, previously generated in the FVB genetic

background, are viable with no overt phenotypes (de Wolf

et al., 2007). To determine how loss of Mrp5 affected heme ho-

meostasis in a mammalian cell model, we generated mouse em-

bryonic fibroblasts (MEFs) from Mrp5+/+ and Mrp5�/� embryos.

Probing MEF lysates with M5I-10, a monoclonal antibody

generated against the first 38 amino acids of the mouse Mrp5,

revealed a band of the expected molecular weight by immuno-

blotting (Figure 6A) (Scheffer et al., 2000). The antibody recog-

nized endogenous Mrp5 in cell lysates from Mrp5+/+ MEFs, as

well as human MRP5 ectopically expressed in Mrp5�/� MEFs.

Human MRP5 colocalized with the basolateral membrane

marker Na+-taurocholate cotransporting polypeptide (NTCP)

and not with the apical membrane marker syntaxin 3 (SYN3) in

polarized MDCKII cells (Figure 6B). In Mrp5+/+ MEFs, endoge-

nous Mrp5 was found in punctuate intracellular vesicles

throughout thecytoplasm,with someproteinon thecell periphery

(Figure 6C). Confocal microscopy studies inMrp5�/�MEFs colo-

calizedMRP5not onlywith theplasmamembrane (WGA) but also

partially with theGolgi (galactosyltransferase) and endosomal re-

cycling organelles (Rab4, Rab5, Rab9, and Rab11) (Figure 6D).

To verify the yeast results, we transfected Mrp5+/+ and

Mrp5�/� MEFs with an engineered horseradish peroxidase
8 Cell Metabolism 19, 1–12, June 3, 2014 ª2014 Elsevier Inc.
(HRP) that was confined to the Golgi with a targeting sequence

(White et al., 2013). Because holo-HRP requires heme as a

cofactor, HRP activity reflects heme availability in the Golgi

compartment (White et al., 2013). When heme-depleted MEFs

expressing HRP were supplemented with heme in the growth

medium, robust HRP activity was detected in Mrp5+/+ cells,

but notMrp5�/� cells; HRP activity was significantly suppressed

by 65% to 80% in Mrp5�/� cells (Figure 6E). Together, these

results in yeast and mouse cells support a composite model in

which MRP5 is a heme exporter that transports heme from the

cytosol into the lumen of the secretory pathway (Figure 6F).

DISCUSSION

The nematode C. elegans is unable to synthesize heme and

therefore is innately dependent on a network of heme sensing,

trafficking, and transporting molecules to import environmental

heme into the intestine and then export this heme to different

tissues and subcellular compartments. In the current study, we

show that MRP-5 plays an essential role in C. elegans heme

homeostasis and that heme is potentially the physiologically

relevant substrate of MRP5 across metazoans. For almost

two decades, MRP5 has been studied as an exporter of cancer

drugs, organic anions, and nucleoside monophosphates,

although none of these studies provided direct genetic evidence

for a physiological role for MRP5 in growth and development

(Borst et al., 2007; Kool et al., 1997; Wijnholds et al., 2000).

Our conclusions about MRP-5 function are supported by the

following findings: (1) targeted mrp-5 deficiency in the intestine

causes embryonic lethality; (2) MRP-5 primarily localizes to the

basolateral plasma membrane, and MRP-5 deficiency results

in ZnMP accumulation in the worm intestine; (3) mrp-5 is ex-

pressed during all developmental stages and over a wide range

of heme concentrations; and (4) functional heme transport as-

says in yeast suggest that MRP-5 has the capability to export

heme. Altogether, these results suggest that MRP-5 is an impor-

tant membrane-bound heme exporter in C. elegans.

An unanticipated consequence of MRP-5 deficiency in worms

is the apparent disconnect between heme levels in the intes-

tine and levels in extraintestinal tissues. In the absence of an

intestinal heme exporter, it would be expected that heme will

accumulate in the intestine and extraintestinal tissues will be

heme-deprived, as seen in the HRG-2::YFP reporter strain.

However, depletion of mrp-5 also results in robust expression

of the Phrg-1::GFP intestinal heme reporter, and this occurs

when heme is accumulating within the intestine, a condition

when such transporters are not normally expressed. If the hrg-

1 promoter was solely regulated by intestinal heme levels, then

we would expect intestinal GFP to be suppressed. It could be

that mrp-5 depletion causes compartmentalization of accumu-

lated heme in the intestine such that this heme can no longer

be detected by the hrg-1 promoter. However, another plausible

interpretation of this paradox is that intestinal heme levels are

integratedwith and regulated by ‘‘heme signals’’ from extraintes-

tinal tissues. That low extraintestinal heme levels activate a

depletion signal within a heme-loaded intestine implies the exis-

tence of a network for communicating heme status between

extraintestinal tissues and their sole source of heme, the intes-

tine. We envisage that cellular heme levels in C. elegans, and



Figure 6. MRP5 Localizes to the Secretory Pathway and Alters Heme Levels in This Compartment

(A) Immunoblot analysis of Mrp5 expression in MEFs generated from Mrp5+/+ and Mrp5�/� FVB mice. Cell lysates were resolved on SDS/PAGE and blotted to

nitrocellulose membranes for probing with a monoclonal anti-MRP5 antibody.

(B) MDCKII cells stably expressing human MRP5 were transfected with the basolateral marker NTCP-GFP or the apical marker Syntaxin3-GFP and grown to

confluency on transwell filters. Polarization of the monolayer was determined after measuring a transient spike in trans-epithelial electrical resistance, which

remained above baseline level. Cells were fixed and probed with monoclonal anti-MRP5, followed by Alexa 568-conjugated secondary antibody, and imaged

using confocal microscopy. A single confocal section (xy) is depicted along with composite stacks in side views (yz, xz).

(C) Immunohistochemistry of endogenous Mrp5 in Mrp5+/+ and Mrp5�/� mouse MEFs. Mrp5 staining was performed as in Figure 6B, using an Alexa 488-

conjugated secondary antibody. Scale bar, 20 mM.

(D) Immunolocalization of humanMRP5 overexpressed in MEFs by confocal microscopy. WGA is used as a plasmamembrane (PM) marker, RFP-GalT is a trans-

Golgi (TGN) marker, Rab4YFP marks early endosomes (EE) and the endocytic recycling compartment (ERC), Rab5YFP marks EEs, Rab9YFP marks late

endosomes (LE), and the TGN, Rab11YFP marks the ERC and TGN. Scale bar, 20 mM.

(E) Heme-dependent horseradish peroxidase (HRP) activity inMrp5+/+ orMrp5�/�MEFs. Cells were transfected withGolgi-HRP and then grown for 24 hr in heme-

depleted media plus succinyl acetone (HD+SA) for complete heme depletion. Indicated amounts of hemewere added back and cells were incubated for a further

24 hr. Cell lysates were harvested and analyzed for peroxidase activity, which was normalized to peroxidase activity from samples not expressing Golgi-HRP and

then to the protein concentration of each sample. ***p < 0.001 for knockout MEFs when compared to wild-type MEFs under identical conditions; n = 3 (two-way

ANOVA, Bonferroni post test). Error bars represent mean ± SEM.

(F) Proposed model for heme transport by MRP5. In this composite model, based on results from genetic, biochemical, and localization studies in worm and

mammalian systems, MRP5 can localize to the plasmamembrane for heme export as well as to the secretory pathway for heme delivery to luminal hemoproteins.
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plausibly vertebrates, are regulated not solely by internal heme

content (cell autonomous) but also by distally located pro-

teins that signal systemic heme requirements to an intertissue

heme trafficking network (cell nonautonomous). This prediction

is further supported by our findings that depletion of either

a heme exporter (mrp-5) or a heme importer (hrg-1) produces

similar, overlapping phenotypes in worms and zebrafish, i.e.,

that mobilization of heme in and out of tissues is as important

as endogenous heme synthesis (Rajagopal et al., 2008; White

et al., 2013; Yuan et al., 2012). Although both heme importers

and exporters are obviously essential for survival of a heme
auxotroph, these proteins also play an important role in verte-

brates as demonstrated by developmental and blood defects

in zebrafish.

Given the severe phenotypes associated with mrp-5 defi-

ciency in worms and zebrafish, why doMrp5 null mice not exhibit

any overt hematological phenotypes? Clearly, worm and human

MRP5 have similar phenotypes in yeast. One plausible expla-

nation could be that in mammals, FLVCR1 isoforms play a

prominent role in heme export, while MRP5 performs a more

specialized role (Chiabrando et al., 2012; Fleming and Hamza,

2012; Keel et al., 2008). It is notable that worms in which each
Cell Metabolism 19, 1–12, June 3, 2014 ª2014 Elsevier Inc. 9
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of the five FLVCR homologs were depleted exhibited no heme-

dependent phenotypes, signifying that, at least in lower meta-

zoans, MRP5 plays a definitive and essential role in heme

homeostasis. A second explanation is the influence of the FVB

genetic background of the Mrp5 mutant mouse (de Wolf et al.,

2007). Inherently, the FVB strain has high liver and spleen iron

content and is therefore ill-suited for studies of systemic iron ho-

meostasis. This is in contrast to the C57BL/6 strain, which has a

much lower liver and spleen iron content and, therefore, presents

a mouse model that is more sensitive to perturbation in iron

metabolism (Wang et al., 2007). For example, mutations in the

iron transporter DMT1 are viable in certain mouse strains but

become lethal when backcrossed into the C57BL/6 background

(M. Fleming, personal communication). Lastly, in vivo compen-

satory pathways may exist to overcome heme or iron meta-

bolism defects in Mrp5�/� mice. It is noteworthy that in humans

and other placental mammals, MRP5/ABCC5 has two recently

described paralogs, ABCC11 and ABCC12; mice and zebrafish

genomes contain only ABCC12 (Kruh et al., 2007; Tammur et al.,

2001; Yabuuchi et al., 2001). Although it has been reported

that MRP9/ABCC12 also localizes to the secretory pathway in

unpolarized mammalian cells (Ono et al., 2007), the functions

of ABCC11 and ABCC12 are largely unknown.

In worms, yeast, andmammalian cells, MRP5 localizes to both

the plasma membrane and intracellular vesicles. The cell-sur-

face localization of MRP5 could be reconciled by the well-stud-

ied function of ABCC transporters to efflux substrates into the

extracellular milieu, consistent with the expected role of export-

ing heme from the C. elegans intestine into the worm’s circula-

tory system. However, MRP5 is also found in the secretory

pathway as part of the endocytic recycling compartment. While

we do not show that MRP5 has heme export activity by direct

biochemical assays or that it can deliver heme to an endo-

genously expressed mammalian hemoprotein, our genetic and

cell biological results in yeast and MEFs support a model in

which heme transported into the secretory pathway by MRP5

is incorporated into luminal hemoproteins (Figure 6F). The endo-

somal trafficking of MRP5 could be mediated by an acidic-dileu-

cine-based sorting signal located in the cytoplasmic carboxy

termini of vertebrate MRP5 proteins (Bonifacino and Traub,

2003). It is noteworthy that ATP7A, a copper-transporting

P-type ATPase, pumps copper into the secretory compartment

for metallation of essential cuproproteins in the Golgi as well

as exports copper across the plasma membrane to regulate

body copper stores (Lutsenko and Petris, 2003). Conceivably,

MRP5may perform a similar dual function as a heme transporter.

EXPERIMENTAL PROCEDURES

Strains and Vertebrate Experiments

All vertebrate animal experiments were approved by the University of Mary-

land Institutional Animal Care and Use Committee. Wild-type zebrafish were

obtained from the Zebrafish International Resource Center and were staged,

raised, and maintained as described previously (Kimmel et al., 1995; Wester-

field, 2000). Some worm strains were obtained from the Caenorhabditis

Genetics Center, which is funded by National Institutes of Health Office of

Research Infrastructure Programs (P40 OD010440). All worm strains used

in this study are listed in Table S2. Worms were maintained either in liquid

mCeHR2 or on Nematode Growth Medium agar plates (Nass and Hamza,

2007). C. elegans transcriptional and translational reporters were generated

using Multisite Gateway recombination (Invitrogen) and introduced into
10 Cell Metabolism 19, 1–12, June 3, 2014 ª2014 Elsevier Inc.
unc-119 worms using the PDS-1000 particle delivery system (Bio-Rad)

(Chen et al., 2011).

Worm Sorting and Imaging

Worms were grown from the L1 larval stage to the early adult stage on RNAi

plates. Worms for each condition were analyzed for time of flight (length)

and extinction (optical density) using a COPAS BioSort (Union Biometrica)

with gating parameters for mixed worm populations as in Chen et al. (2011).

GFP, yellow fluorescent protein, and ZnMP fluorescence in worms was

imaged using a DMIRE2 epifluorescence microscope (Leica) connected to a

Retiga 1300 cooled mono 12-bit camera or using a laser scanning confocal

microscope (LSM710) (Zeiss).

Zebrafish Experiments

Zebrafish knockdowns were performed using �1.4 nl per embryo of �0.5 M

MO injected into one-cell-stage embryos (Rajagopal et al., 2008). Embryos

were analyzed at 24–72 hr postfertilizion (hpf) by o-dianisidine staining for

hemoglobinization, for LCR-GFP expression, and for gata1 expression using

standard procedures (Ganis et al., 2012). Pools of�50 embryos were analyzed

by fluorescence-activated cell sorting (FACS) from wild-type, control MO, and

mrp5 MO-injected LCR-GFP fish. Whole-mount in situ hybridization was per-

formed on wild-type embryos with anmrp5 cDNA probe at one cell to 5 dpf, as

well as on wild-type, control, and mrp5 morphants with a gata1 cDNA probe

using standard procedures at 24 hpf (Hauptmann, 1999). Rescue injections

were performed using 175 pg of rescue construct.

Yeast Assays

S. cerevisiae strainsweregrownandassaysperformedasdescribedpreviously

(Yuan et al., 2012). Plasmids encoding potential heme transporters were trans-

formed into yeast using the lithium method. Before each assay, yeast were

heme-starved by growth in 2% w/v raffinose SC (-Ura) liquid medium. Please

see Supplemental Experimental Procedures for information regarding the

growth assays, the b-galactosidase assay, and the ferric reductase assay.

Mammalian Cell Culture and HRP Assays

Mammalian cell lines were cultured in growth medium consisting of Dul-

becco’s modified Eagle’s medium (DMEM), 10% fetal bovine serum (FBS),

and 1% PSG (100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM L-gluta-

mine). Golgi-targeted HRPwas transfected intoMEFs using the Lipofectamine

transfection reagent (Invitrogen). Following overnight transfection, MEFs were

incubated in heme-depleted media (DMEM with 10% heme-depleted FBS

and 0.5 mM succinylacetone) for 24 hr. Following heme depletion, cells were

switched to heme-depleted media with added heme for 24 hr and harvested

for peroxidase activity (White et al., 2013).

Bioinformatics and Statistics

ClustalW and MEGA5 were used to generate a phylogenetic tree for the

full-length sequences of all human, mouse, zebrafish, and C. elegans MRP/

ABCC proteins (Larkin et al., 2007; Tamura et al., 2011). Membrane protein to-

pologies were generated using TMHMMand drawn using TOPO2 (http://www.

sacs.ucsf.edu/TOPO2/; Krogh et al., 2001). All data are presented as mean ±

SEM. Statistical significance was determined using one-way or two-way

ANOVAwith Bonferroni post tests in GraphPad Prism, version 5.00 (GraphPad

Software, Inc).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cmet.2014.03.030.
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